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Figure 1: Unseen pose rendering from MonoPerfCap [23] test split. Similar to the unseen pose synthesis results on
Human3.6M [4, 5], NPC produces sharper and more plausible details, such as shoes, knuckles, and ears.

In this document, we provide additional qualitative
comparisons on MonoPerfCap [23] (Section 1) and Hu-
man3.6M [4, 5] test splits (Section 2), and show extra exam-
ples on the motion retargeting task (Section 3). We further
present the initial canonical point clouds from DANBO for
all subjects (Section 4). We then describe implementation
details, including network architectures and auxiliary fea-
tures used in NPC (Section 5), followed by a comprehen-
sive ablation study to quantify the impact of each network
feature and our tabulated K-NN search. We also include an
experiment demonstrating that using SMPL surface points
works just as well as DANBO initialization (Section 6). Fi-
nally, we provide a visual example for failure cases (Sec-
tion 7). Our supplemental video shows animated results of
our NPC characters1.

1All data sourcing, modeling codes, and experiments were developed
at University of British Columbia. Meta did not obtain the data/codes or
conduct any experiments in this work.

1. Qualitative Comparisons on MonoPerfCap
We present unseen pose synthesis rendering on MonoP-

erfCap [23] test split in Figure 1, with 3D poses estimated
by SPIN [6] and refined by A-NeRF [21]. Compared to
the state-of-the-art method DANBO [20], NPC synthesizes
sharper details like cloth wrinkles, ears, and knuckles. NPC
also preserves clearer contour and textures on shoes and
trousers. Notably, despite one of the feet missing in the
initial point clouds (see Section 4 and Figure 4), NPC can
recover the shoe to some extent, thanks to the iterative re-
finement of the initial point locations and the combination
of the point-based representation with the continuous neural
field.

2. Additional Qualitative Comparisons on Hu-
man3.6M

We provide additional unseen pose synthesis results
on Human3.6M Anim-NeRF [4, 5, 16] test split in Fig-
ure 2. We show, on various subjects, that NPC captures
high-frequency appearance more accurately than Neural-
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Figure 2: Unseen pose synthesis on Anim-NeRF Human3.6M [4, 5, 16] test split. On various subjects, NPC shows better
details in shoes, cloth wrinkles and body landmarks like motion capture trackers.

Body [17] and ARAH [22], without relying on template
meshes and 3D scan priors.

3. Additional Motion Retargeting Examples
NPC shows improved texture and contour consistency

over DANBO [20] when rendering completely out-of-
distribution poses on Human3.6M and AIST++ [9] in Fig-
ure 3.

4. Canonical Point Clouds Initialization
DANBO provides good point cloud initialization despite

being trained only for around half an hour, as shown in Fig-
ure 4. Note that the initialization is still noisy, and includes

twisted or missing body parts (Figure 4, last row).
To extract the point clouds, we adopt the official

DANBO implementation2 and the training configuration,
except for the following changes: we half the samples along
each ray to 48 uniform and 24 importance samples, and
train DANBO only for 10k iterations. We use matching
cube [11] with grid resolution 512 × 512 × 512 to extract
the T-pose point clouds. NPC uses 3800 surface points to
represent each subject from both Human3.6M and MonoP-
erfCap. Our surface points are sparser than the commonly
used SMPL mesh [2, 10], which contains 6890 vertices.

2Github repository: https://github.com/LemonATsu/
DANBO-pytorch

https://github.com/LemonATsu/DANBO-pytorch
https://github.com/LemonATsu/DANBO-pytorch
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Figure 3: Motion retargeting from out-of-distribution
poses on various subjects. NPC retains better appearance
consistency and texture details.

5. Implementation details
NPC is supervised using only the frames from the train-

ing videos, along with 4 regularization terms that helps im-
prove the model quality:

L = Lp + λeikLeik + λ∆pL∆p + λNLN + λSLS , (1)

with λeik = 0.01, λ∆p = 1.0, λN = 10.0, and λS = 0.1.
For both Leik and Ls, we construct p̃ by randomly selecting
100 points from each body part for the loss computation.

5.1. Training configurations

NPC hyperparameters. For all datasets, we train our
model for 150k iterations with a learning rate 0.0005 that
decays to 0.0001 in 500k iterations. We form each train-
ing batch by sampling 4096 images from 16 images, with
64 uniform and 32 importance samples along each ray. We
use K = 8 for Human3.6M [4, 5] and MonoPerfcap [23].
On ZJU-Mocap [3, 17], we set K = 16 to handle the long-
range deformation dependency, and adopt per-timestep en-
codings following ARAH to capture temporal deformations
beyond body poses. We train NPC for 150k iterations. The
per-point learnable influence scale βj in the main paper Eq
(4) is initialized to 0.0005.

5.2. Auxiliary features

Below, we describe auxiliary features that we adopt in
our design.

Per-frame features. Like prior work [12, 16, 17, 20, 21],
we use per-frame codes f(t) to model varying illumina-
tion that cannot be learned without illumination information
available. Note that we also add f(t) to our TAVA base-
line [8], which improves its results on sequences with illu-
mination changes. We notice that their proposed ambient
occlusion method cannot handle Human3.6M [4, 5] dataset
properly as multiple light sources are presented in the scene.

Geometric features. We supply Fψ with two geometric
features. We encode the first feature fvi , the view direc-
tion, as the dot product to the bone-to-surface-point vector
bB→po

i
. The second geometric feature is the projection of

qo onto the bone-to-surface-point vector, ri = qo ·bB→poi
.

We concatenate the two features and weighted sum the fea-
tures via

g(q) =

(
K∑
i=1

ai∑K
j=1 aj

· [ri, fvi ]

)
. (2)

We conduct ablation studies on both ri and fvi , and report
the result in Section 6.

5.3. Network Architecture

Linear blend skinning MLP. Following [16], we em-
ploy a small (3-layers with 32 hidden units per layer) coor-
dinate MLP to predict the final LBS weights. We introduce
one MLPw,j for each part j,

wi,j = MLPw,j(pi,j) +w0
i,j , (3)

with pi,j the i-th surface point belonging to part j, and
w0
i,j the initial LBS weight. Figure 5(a) depicts the network

structure of MLPw. The use of coordinate MLP implicitly
regularizes the LBS weights spatially.

GNN-FiLM. Our GNN-FiLM consists of two parts, as il-
lustrated in Figure 5(b). The first part is a 4-layer GNN with
128 hidden units that takes as input the body pose θ, to out-
put the FiLM conditional vectors [18] for each body part j,

αj , γj = GNN(θ). (4)

The second part is a 4-layer per-part coordinate MLP that
takes as input pi,j to predict fθ and ∆p. αj and γj scale
and shift the first layer output feature z. The modulated fea-
tures are subsequently forwarded to the rest of the network
to produce pose-conditioned outputs fθ and ∆p.

NeRF Fψ . Our NeRF network Fψ follows the standard
design of NeRF [14], with reduced numbers of linear layers.
Precisely, we use only 3 layers, instead of 8 in the original
NeRF and DANBO, to extract the feature shared between
the radiance and geometry branch. We show the architec-
ture in Figure 5(c).
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Figure 4: Initial canonical point clouds extracted using DANBO [20]. Overall, DANBO can capture the rough geometry
of the target character in about half an hour. These points serve as a good starting point for NPC to build details appearance
on top.

Positional Encoding. We apply positional encoding to
help the network learn high-frequency details, similar to all
other neural field-based methods [8, 13, 16, 17, 20, 21, 22].
Specifically, we apply positional encoding with 5 frequency
bands to the input pose θ for GNN-FiLM, similar to
DANBO [20]. Additionally, we use relative spatial posi-
tional encoding proposed in KeypointNeRF [13] to encode
fv and (fp, fs) with 2 and 6 frequency bands respectively.

Our final network has a total of 2.7M learnable param-
eters, which is only 0.2M more parameters than one of the
state-of-the-art methods DANBO. NPC also requires less

training iterations than DANBO (150k v.s. 200k iterations).

5.4. Inference Time

NPC takes around 7 seconds to render a 1000 × 1000
image using a single NVIDIA V100 GPU, roughly match-
ing the rendering speed of DANBO. On the other hand,
TAVA [8] requires over 4 minutes in the same setting due to
the computationally heavy root-finding algorithm: it takes
0.26 seconds for the root for 10k 3D queries. This corre-
sponds to about 60-70 rays/pixels in the batch.
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Figure 5: Network architectures. (a) We use a small MLP for each body part to predict the residual of the initial LBS weights
w0
i,j , producing the final weight. (b) Our GNN predicts conditional vectors local to each body part for modulating the pose

dependent outputs. (c) Our NeRF Fψ is modified from the original architecture [14], with less shared layer (green). Our
character-specific features f(qo), g(qo), and f(t) are introduced at two different layers to maintain view direction invariance
for predicting s.
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Figure 6: Ablation study on unseen poses. Our proposed
features fd, fθ and fp enables NPC to achieve better over-
all perceptual quality, with less noises and improved consis-
tency on the texture.

Table 1: Ablation study on each of our proposed designs.
Most of our features contribute to the final perceptual qual-
ity.

KIDx100 ↓ LPIPS (VGG) ↓ LPIPS (Alex) ↓

No fd 5.54 0.122 0.132
No fp 4.51 0.122 0.131
No fθ 4.50 0.120 0.132
No ∆p 4.61 0.120 0.131
No fv 4.48 0.115 0.124
No ri 3.87 0.116 0.125

Ours full 4.43 0.115 0.124

Table 2: Ablation study on running with 4 different
canonical point clouds initializations. We report the stan-
dard deviations in the parenthesis. The indicates that our
point initialization strategy is reliable, and NPC behaves
consistently across different training runs.

S9 WP

KIDx100 ↓ LPIPS (VGG) ↓ LPIPS (Alex) ↓ KIDx100 ↓ LPIPS (VGG) ↓ LPIPS (Alex) ↓

4.34 (± 0.12) 0.116 (± 0.000) 0.124 (± 0.000) 3.75 (± 0.29) 0.207 (± 0.001) 0.127 (± 0.001)

6. Ablation study

Different feature. We report the full resluts in Table 1. In
addition to (fd, fp, fθ,∆p) discussed in the main paper, we
observe that the view direction encoding helps moderately
in KID [1]. We also notice that the geometric feature ri does



Table 3: Tabulated K-NN overlaps with the naive K-NN
with high probability. We report the neighbor overlap rate
between ours and the naive K-NN for k = 8 , as well as the
coverage rate of the k-th naive nearest neighbors.

1st 2nd 3rd 4th 5th Overlap rate (all eight)

100% 86.4% 81.5% 75.9% 69.9% 72.6%

Table 4: NPC can also use SMPL [10] surface points for
initialization.

PSNR ↑ LPIPS ↓

DANBO init. 24.86 (+0.00%) 0.115 (+0.00%)
SMPL init. 24.90 (+0.02%) 0.116 (+0.90%)

not contribute meaningfully, and could even be detrimental
to the final performance in KID. We include this feature in
our design as it was helpful in our early development stage.
We hypothesize that ri brings no benefits since fd provides
bone-relative information with better accuracy. In Figure 6,
we visualize how each component can affect the rendering
qualitatively. We omit No fv and No ri variants from the
figure, as they are perceptually indistinguishable from the
full model. Note that in the main paper, we report only
LPIPS on VGG feature [19], as the VGG and AlexNet [7]
scores are highly correlated.

Tabluated K-NN. Our tabulated K-NN returns nearest
neighbors that overlap substantially with the naive K-NN,
as reported in Table 3. Notably, the tabulated K-NN yields
a 9x speed up in forward time compared to the naive coun-
terpart as measured by PyTorch benchmark tool [15].

SMPL initialization. We initialize NPC using SMPL sur-
face points without the LBS weights. As reported in Ta-
ble 4, both initialization strategies lead to similar PSNR
and LPIPS. The results demonstrate the robustness of NPC,
offering the option to use SMPL instead of A-NeRF and
DANBO if preferred and available.

7. Limitations
In Figure 7, we show an example of the limitations dis-

cussed in the main paper.
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